Subject Specific Stream Classification Preprocessing Algorithm for Twitter Data Stream
نویسندگان
چکیده
Micro-blogging service Twitter is a lucrative source for data mining applications on global sentiment. But due to the omnifariousness of the subjects mentioned in each data item; it is inefficient to run a data mining algorithm on the raw data. This paper discusses an algorithm to accurately classify the entire stream in to a given number of mutually exclusive collectively exhaustive streams upon each of which the data mining algorithm can be run separately yielding more relevant results with a high efficiency.
منابع مشابه
Detecting Concept Drift in Data Stream Using Semi-Supervised Classification
Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...
متن کاملTowards Social Data Platform: Automatic Topic-focused Monitor for Twitter Stream
Many novel applications have been built based on analyzing tweets about specific topics. While these applications provide different kinds of analysis, they share a common task of monitoring “target” tweets from the Twitter stream for a topic. The current solution for this task tracks a set of manually selected keywords with Twitter APIs. Obviously, this manual approach has many limitations. In ...
متن کاملSentiment Knowledge Discovery in Twitter Streaming Data
Micro-blogs are a challenging new source of information for data mining techniques. Twitter is a micro-blogging service built to discover what is happening at any moment in time, anywhere in the world. Twitter messages are short, and generated constantly, and well suited for knowledge discovery using data stream mining. We briefly discuss the challenges that Twitter data streams pose, focusing ...
متن کاملDetecting a Tweet's Topic within a Large Number of Portuguese Twitter Trends
In this paper we propose to approach the subject of Twitter Topic Detection when in the presence of a large number of trending topics. We use a new technique, called Twitter Topic Fuzzy Fingerprints, and compare it with two popular text classification techniques, Support Vector Machines (SVM) and k-Nearest Neighbours (kNN). Preliminary results show that it outperforms the other two techniques, ...
متن کاملFeature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1705.09995 شماره
صفحات -
تاریخ انتشار 2017